Version number 5 Date 08/08/18

Name:	Slags, lead smelting (Boundary composition)
Substance:	Slags, lead smelting
EC Number:	273-825-9
CAS Number:	69029-84-1
Substance Type:	UVCB
Degree of purity:	100 % (w/w)
SIP description:	Slags, lead smelting is a solid in particulate or granular form. It is produced in blast furnace processes, under reducing conditions,
	applied to primary and secondary lead-containing feeds. Slags, lead
	smelting is composed primarily of iron and calcium silicates, and has
	only low levels of lead.

Composition:

Constituents	Typical concentration	Concentration range	Remarks
Silicon EC no.: 231-130-8	≤ 29.3 % (w/w)	≥ 0.0 — ≤ 35 % (w/w)	Refers to % element. Si is generally present in the form of silicates (e.g. Fe2SiO4).
Zinc EC no.: 231-175-3	≤ 14.9 % (w/w)	≥ 0.05 — ≤ 30 % (w/w)	Refers to % element. Zn is generally present in the form of sulphides (e.g. (Fe,Zn,Cu,Pb)S), oxides (e.g. ZnFe2O4, Fe(Zn)O) and/or in the form of an alloy (e.g. PbZnMo).
Calcium EC no.: 231-179-5	≤ 24 % (w/w)	≥ 0.05 — ≤ 25 % (w/w)	Refers to % element. Ca is generally present in the form of silicates (e.g. Ca3Mg(SiO4)2).
Lead EC no.: 231-100-4	≤ 3.3 % (w/w)	≥ 0 — ≤ 20 % (w/w)	Refers to % element. Pb is generally present in form of compounds such as sulphides (e.g. (Fe,Zn,Cu,Pb)S). It can also be present in the metallic form.
Aluminium EC no.: 231-072-3	≤ 7.54 % (w/w)	≥ 0 — ≤ 15 % (w/w)	Refers to % element. Al is generally present in the form of compounds such as silicates.
Iron EC no.: 231-096-4	≤ 37.5 % (w/w)	Min. 3% w/w	Refers to % element. Fe is generally present in the compounds form such as oxides (e.g. FeO, Fe3O4, Fe(Zn)O), sulphides (e.g. FeS, (Fe,Zn,Cu,Pb)S), sulphates (e.g. FeSOx) and/ or silicates (e.g. Fe2SiO4) and may also be present in the form of an alloy (e.g. FeCrNi) and/or arsenide (e.g. FeAs).

Constituents	Typical concentration	Concentration range	Remarks
Sulfur EC no.: 231-722-6	≤ 4 % (w/w)	≥ 0 — ≤ 35 % (w/w)	Refers to % element. S is generally present in the sulphide form (e.g. FeS, (Fe,Zn,Cu,Pb)S) and/or sulphates (e.g. FeSOx).
Magnesium EC no.: 231-104-6	≤ 3.91 % (w/w)	≥ 0 — ≤ 20 % (w/w)	Refers to % element. Mg is generally present in the form of compounds such as silicates.
Potassium EC no.: 231-119-8	≤ 0.24 % (w/w)	≥ 0 — ≤ 20 % (w/w)	Refers to % element. K is assumed to be present in the form of compounds.
Sodium EC no.: 231-132-9	≤ 0.71 % (w/w)	≥ 0 — ≤ 20 % (w/w)	Refers to % element. iUVCB classification based on Na in metallic form.
Copper EC no.: 231-159-6	≤ 1.5 % (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. Cu is generally present in the form of sulphides (e.g. (Fe,Zn,Cu,Pb)S) or in the form of an alloy (e.g. Cu(Sn,Sb)).
Arsenic EC no.: 231-148-6	≤ 0.38 % (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. As is generally present in the form of an arsenide (e.g. FeAs).
Cadmium EC no.: 231-152-8	≤ 0.02 % (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. Cd is assumed to be present in the oxide form.
Nickel EC no.: 231-111-4	≤ 0.04 % (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. Ni is generally present in the form of an alloy (e.g. FeCrNi).
Tin EC no.: 231-141-8	≤ 1.5 % (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. Sn is generally present in the form of an alloy (e.g. Cu(Sn,Sb)).
Manganese EC no.: 231-105-1	≤1% (w/w)	≥ 0 — ≤ 10 % (w/w)	Refers to % element. Mg is generally present in the form of compounds such as silicates.
Antimony EC no.: 231-146-5	≤ 0.3 % (w/w)	$\geq 0 - \leq 10 \% (w/w)$	Refers to % element. Sb is generally present in the form of alloys (e.g. Cu(Sn,Sb)).
Chlorine EC no.: 231-959-5	≤ 0.09 % (w/w)	$\geq 0 - \leq 7 \% (w/w)$	Refers to % element. Cl is assumed to be present in the form of compounds.
Bismuth EC no.: 231-177-4	≤ 0.1 % (w/w)	≥ 0 — ≤ 5 % (w/w)	Refers to % element. Bi is assumed to be present in the oxide form.
Chromium EC no.: 231-157-5	≤ 0.9 % (w/w)	≥ 0 — ≤ 5 % (w/w)	Refers to % element. Cr is generally present in the form of an alloy (e.g. FeCrNi).
Barium EC no.: 231-149-1	≤ 1.85 % (w/w)	$\geq 0 - \leq 2 \% (w/w)$	Refers to % element. Ba is assumed to be present in the oxide form.
Cobalt EC no.: 231-158-0	≤ 0.098 % (w/w)	$\geq 0 - \leq 0.1 \% (w/w)$	Refers to % element. Co is assumed to be present in the oxide form.
Selenium EC no.: 231-957-4	≤ 0.01 % (w/w)	$\geq 0 - \leq 0.1 \% (w/w)$	Refers to % element. Se is assumed to be present in the oxide form.

Constituents	Typical concentration	Concentration range	Remarks
Tellurium EC no.: 236-813-4	≤ 0.023 % (w/w)	≥ 0 — ≤ 0.1 % (w/w)	Refers to % element. Te is assumed to be present in the oxide form.
Silver EC no.: 231-131-3	≤ 0.01 % (w/w)	≥ 0 — ≤ 0.02 % (w/w)	Refers to % element. Ag is assumed to be present in the oxide form.
Molybdenum EC no.: 231-107-2	≤ 0.02 % (w/w)	≥ 0 — ≤ 0.02 % (w/w)	Refers to % element. Mo is generally present in the form of an alloy (e.g. PbZnMo).

Classification:

Industry self-classification according to Classification Labelling and Packaging Regulation EC 1272/2008:

CLP

Carc. 1B; H350: May cause cancer. Repr. 1A; H360FD: May damage fertility. May damage the unborn child. Lact.; H362: May cause harm to breast-fed children. STOT Rep. Exp. 1; H372: Causes damage to organs through prolonged or repeated exposure Aquatic Acute 1; H400: Very toxic to aquatic life. Aquatic Chronic 2; H411: Toxic to aquatic life with long lasting effects.

Labelling:

Signal word: Danger

Hazard pictograms:

GHS08: health hazard

GHS09: environment

Hazard statements:

H350	May cause cancer.
H360FD	May damage fertility. May damage the unborn child.
H362	May cause harm to breast-fed children.
H372	Causes damage to central nervous system, blood and kidneys through prolonged or repeated exposure by inhalation or ingestion.
H400	Very toxic to aquatic life.
H411	Toxic to aquatic life with long lasting effects.

Disclaimer

The statements and content supplied in this document are for information purposes only and do not constitute advice regarding legal or regulatory compliance. You are solely responsible for obtaining legal or regulatory advice necessary in making your own evaluation of any legal or regulatory requirements applicable to you or your company. The International Lead Association Europe and the Pb REACH Consortium do not make any representations or warranties in relation to the statements or content appearing in this document, including as regards their accuracy, completeness or timeliness. Neither the International Lead Association Europe nor the Pb REACH Consortium will be responsible for any loss or damage caused by or arising from reliance on the statements made or information contained in this document.