

Grade name:	Matte, lead (Toxic to the environment and repeated dose toxicity grade)
Substance:	Matte, lead
EC Number:	282-356-9
CAS Number:	84195-51-7
Substance Type:	UVCB
Degree of purity:	100 % (w/w)
Description of Product:	Matte, lead is a solid, initially formed as a molten metal sulphide phase during the smelting of primary and secondary lead containing materials high in sulphur.

Composition:

Constituents	Typical concentration	Concentration range	Remarks
Lead EC no.: 231-100-4	<= 5.84 % (w/w)	>= 0 — <= 5.84 % (w/w)	Refers to % element. Pb is generally present in the metallic form and in the oxide form (e.g. PbO). Other Pb compounds such as sulphides (e.g. PbS) and/or silicates (e.g. PbSiO) may also be present.
Copper EC no.: 231-159-6	<= 40.01 % (w/w)	>= 0 — <= 62 % (w/w)	Refers to % element. Cu is generally present in the form of an alloy (e.g. Cu3(Sn,Sb,Ni), SnCuNiFe, SbSnNiCuFe) or in the form of compounds such as sulphides (e.g. Cu2S, CuPbS).
Sulphur EC no.: 231-722-6	<= 21 % (w/w)	>= 0 — <= 30 % (w/w)	Refers to % element. S is generally present in the form of sulphides (e.g. PbS, Cu2S, FeS) and/or sulphates (e.g. FeSO4).
Zinc EC no.: 231-175-3	<= 6 % (w/w)	>= 0 — <= 20 % (w/w)	Refers to % element. Zn is generally present in the oxide form (e.g. FeZnO).
Iron EC no.: 231-096-4	<= 61.2 % (w/w)	>= 0 <= 80 % (w/w)	Refers to % element. Fe is generally present in the metallic form and/or in the form of an alloy (e.g. SnCuNiFe) and/or in the form of compounds such as sulphides (e.g. FeS), oxides (e.g. FeO, MgFeCrO, FeZnO), silicates (e.g. Fe2SiO4), sulphates (e.g. FeSO4) and/or hydroxides (e.g. FeOOH).
Nickel EC no.: 231-111-4	<= 0.9 % (w/w)	>= 0 — <= 0.9 % (w/w)	Refers to % element. Ni is generally present in the form of an alloy (e.g. SbSnNiCuFe, SnCuNiFe, Cu3(Sn,Sb,Ni), SbNi)

Constituents	Typical concentration	Concentration range	Remarks
			and may also be present in the form of compounds such as oxides (e.g. PbNiO).
Silver EC no.: 231-131-3	<= 0.66 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Ag is assumed to be present in the oxide form.
Gold EC no.: 231-165-9	<= 5 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Au is assumed to be present in the oxide form.
Antimony EC no.: 231-146-5	<= 1.21 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Ag is assumed to be present in the oxide form.
Arsenic EC no.: 231-148-6	<= 0.07 % (w/w)	>= 0 <= 0.1 % (w/w)	Refers to % element. As is assumed to be present in the oxide form.
Cadmium EC no.: 231-152-8	<= 0.07 % (w/w)	>= 0 <= 0.1 % (w/w)	Refers to % element. Cd is assumed to be present in the sulphide form.
Selenium EC no.: 231-957-4	<= 0.83 % (w/w)	>= 0 <= 2 % (w/w)	Refers to % element. Se is assumed to be present in the oxide form.
Bismuth EC no.: 231-177-4	<= 0.05 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Bi is assumed to be present in the oxide form.
Molybdenum EC no.: 231-107-2	<= 0.03 % (w/w)	>= 0 <= 0.1 % (w/w)	Refers to % element. Mo is assumed to be present in the oxide form.
Tin EC no.: 231-141-8	<= 3.59 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Sn is generally present in the form of an alloy (e.g. Cu3(Sn,Sb,Ni), SnCuNiFe, Cu3Sn, SbSnNiCuFe).
Tellurium EC no.: 236-813-4	<= 0.43 % (w/w)	>= 0 — <= 1 % (w/w)	Refers to % element. Te is assumed to be present in the oxide form.
Aluminium EC no.: 231-072-3	<= 2 % (w/w)	>= 0 — <= 5 % (w/w)	Refers to % element. Al is generally present in the form of compounds such as silicates.
Manganese EC no.: 231-105-1	<= 1 % (w/w)	>= 0 — <= 5 % (w/w)	Refers to % element. Mn is assumed to be present in the oxide form.
Silicon EC no.: 231-130-8	<= 5 % (w/w)	>= 0 — <= 20 % (w/w)	Refers to % element. Si is generally present in the form of silicates (e.g. PbSiO).
Sodium EC no.: 231-132-9	<= 1.44 % (w/w)	>= 0 <= 5 % (w/w)	Refers to % element. Na is generally present in the form of compounds such as silicates.
Magnesium EC no.: 231-104-6	<= 1 % (w/w)	>= 0 — <= 5 % (w/w)	Refers to % element. Mg is generally present in the form of oxides (e.g. MgFeCrO).
Calcium EC no.: 231-179-5	<= 5 % (w/w)	>= 0 <= 11 % (w/w)	Refers to % element. Ca is generally present in the form of compounds such as silicates.
Potassium EC no.: 231-119-8	<= 0.15 % (w/w)	>= 0 — <= 5 % (w/w)	Refers to % element. K is generally present in the form of

Constituents	Typical concentration	Concentration range	Remarks
			compounds such as silicates.
Chromium EC no.: 231-157-5	<= 0.07 % (w/w)		Refers to % element. Cr is generally present in the form of oxides (e.g. MgFeCrO).

Classification:

Dangerous Substances Directive 67/548/EEC - Not classified as hazardous.

Classification Labelling and Packaging Regulation EC 1272/2008 - Not classified as hazardous.

Industry classification proposals - Industry proposes to classify matte, lead (only toxic to the environment grade) to bring it into line with the latest scientific data and knowledge. The proposed classification will be:

DSD

Xn; R48/20/22: Harmful: danger of serious damage to health by prolonged exposure through inhalation and if swallowed.

N; R50/53: Dangerous for the environment; Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

CLP

STOT Rep. Exp. 2; H373: May cause damage to organs through prolonged or repeated exposure. Aquatic Chronic 1; H410: Very toxic to aquatic life with long lasting effects. Aquatic Acute 1; H400: Very toxic to aquatic life.

Labelling:

Signal word: Warning

Hazard pictograms: GHS08: health hazard

GHS09: environment

Hazard statements:

H373 May cause damage to central nervous system, blood and kidneys through prolonged or repeated exposure by inhalation or ingestion.

H410 Very toxic to aquatic life with long lasting effects.

Disclaimer

The statements and content supplied in this document are for information purposes only and do not constitute advice regarding legal or regulatory compliance. You are solely responsible for obtaining legal or regulatory advice necessary in making your own evaluation of any legal or regulatory requirements applicable to you or your company. The International Lead Association Europe and the Pb REACH Consortium do not make any representations or warranties in relation to the statements or content appearing in this document, including as regards their accuracy, completeness or timeliness. Neither the International Lead Association Europe nor the Pb REACH Consortium will be responsible for any loss or damage caused by or arising from reliance on the statements made or information contained in this document.