

Grade name: Slags, lead smelting (not classified)

Substance: Slags, lead smelting

EC Number: 273-825-9
CAS Number: 69029-84-1
Substance Type: UVCB

Degree of purity: 100 % (w/w)

Description of Product: Slags lead smelting are iron silicate based slags that are produced to

remove high melting point impurities during the smelting of lead.

Composition:

Constituents	Typical concentration	Concentration range	Remarks
Lead EC no.: 231-100-4	<= 1.74 % (w/w)	>= 0 - <= 1.74 % (w/w)	Refers to % element. In general Pb is mainly present in the metallic form. Pb is also present in form of compounds such as oxides (e.g. PbO).
Copper EC no.: 231-159-6	<= 0.382 % (w/w)	>= 0 — <= 0.382 % (w/w)	Refers to % element. Cu is generally present in the form of sulphides (e.g. Cu2S, Cu5FeS4) or in the form of an alloy (e.g. Cu(Sn,Sb), SnNiSbCu).
Cobalt EC no.: 231-158-0	<= 0.098 % (w/w)	>= 0 — <= 0.098 % (w/w)	Refers to % element. Co is assumed to be present in the oxide form.
Sulfur EC no.: 231-722-6	<= 1.2 % (w/w)	>= 0 <= 1.2 % (w/w)	Refers to % element. S is generally present in the sulphide form (e.g. FeS, Cu5FeS4).
Arsenic EC no.: 231-148-6	<= 0.073 % (w/w)	>= 0 <= 0.073 % (w/w)	Refers to % element. As is generally present in the form of an alloy (e.g. NiSnSbAs).
Zinc EC no.: 231-175-3	<= 4.4 % (w/w)	>= 0 <= 4.4 % (w/w)	Refers to % element. Zn is generally present in the form of sulphides (e.g. ZnFeS2) and silicates (e.g. Ca2ZnSi2O7).
Iron EC no.: 231-096-4	<= 23.1 % (w/w)	>= 0 <= 23.1 % (w/w)	Refers to % element. Fe is generally present in the compounds form such as oxides (e.g. FeO, Fe3O4), sulphides (e.g. FeS, Cu5FeS4, ZnFeS2) and/or silicates (e.g. Fe2SiO4).
Nickel EC no.: 231-111-4	<= 0.04 % (w/w)	>= 0 — <= 0.04 % (w/w)	Refers to % element. Ni is generally present in the form of an alloy (e.g. SnNiSbCu, NiSnSbAs).
Bismuth EC no.: 231-177-4	<= 0.01 % (w/w)	>= 0 <= 0.01 % (w/w)	Refers to % element. Bi is assumed to be present in the

Constituents	Typical concentration	Concentration range	Remarks
			oxide form.
Tin EC no.: 231-141-8	<= 0.535 % (w/w)	>= 0 <= 0.535 % (w/w)	Refers to % element. Sn is generally present in the form of an alloy (e.g. Cu(Sn,Sb), NiSnSbAs, SnNiSbCu).
Selenium EC no.: 231-957-4	<= 0.01 % (w/w)	>= 0 <= 0.01 % (w/w)	Refers to % element. Se is assumed to be present in the oxide form.
Tellurium EC no.: 236-813-4	<= 0.019 % (w/w)	>= 0 <= 0.019 % (w/w)	Refers to % element. Te is assumed to be present in the oxide form.
Aluminium EC no.: 231-072-3	<= 4.98 % (w/w)	>= 0 — <= 4.98 % (w/w)	Refers to % element. Al is generally present in the form of compounds such as silicates.
Chromium EC no.: 231-157-5	<= 0.286 % (w/w)	>= 0 <= 0.286 % (w/w)	Refers to % element. Cr is assumed to be present in the oxide form (e.g. Cr2O3).
Manganese EC no.: 231-105-1	<= 0.533 % (w/w)	>= 0 <= 0.533 % (w/w)	Refers to % element. Mg is generally present in the form of compounds such as silicates.
Antimony EC no.: 231-146-5	<= 0.079 % (w/w)	>= 0 <= 0.079 % (w/w)	Refers to % element. Sb is generally present in the form of alloys (e.g. SnNiSbCu, Cu(Sn,Sb)).
Silicon EC no.: 231-130-8	<= 27.1 % (w/w)	>= 0 <= 27.1 % (w/w)	Refers to % element. Si is generally present in the form of silicates (e.g. Ca2ZnSi2O7, CaSiO, Fe2SiO4).
Calcium EC no.: 231-179-5	<= 20.6 % (w/w)	>= 0 — <= 20.6 % (w/w)	Refers to % element. Ca is generally present in the form of silicates (e.g. CaSiO, Ca2ZnSi2O7).
Magnesium EC no.: 231-104-6	<= 1.56 % (w/w)	>= 0 — <= 1.56 % (w/w)	Refers to % element. Mg is generally present in the form of compounds such as silicates.
Potassium EC no.: 231-119-8	<= 0.53 % (w/w)	>= 0 <= 0.53 % (w/w)	Refers to % element. K is assumed to be present in the form of compounds.
Sodium EC no.: 231-132-9	<= 1.15 % (w/w)	>= 0 <= 1.15 % (w/w)	Refers to % element. Na is assumed to be present in the form of compounds.

Classification:

Dangerous Substances Directive 67/548/EEC - Not classified as hazardous.

Classification Labelling and Packaging Regulation EC 1272/2008 - Not classified as hazardous.

Industry classification proposals - Industry proposes to classify slags, lead smelting (no carcinogenic potential grade) to bring it into line with the latest scientific data and knowledge. The proposed classification will be:

not classified

Disclaimer

The statements and content supplied in this document are for information purposes only and do not constitute advice regarding legal or regulatory compliance. You are solely responsible for obtaining legal or regulatory advice necessary in making your own evaluation of any legal or regulatory requirements applicable to you or your company. The International Lead Association Europe and the Pb REACH Consortium do not make any representations or warranties in relation to the statements or content appearing in this document, including as regards their accuracy, completeness or timeliness. Neither the International Lead Association Europe nor the Pb REACH Consortium will be responsible for any loss or damage caused by or arising from reliance on the statements made or information contained in this document.