

Grade name: Substance: EC Number: CAS Number: Substance Type: Degree of purity: Description of Product: Flue dust, lead refining (general grade) Flue dust, lead refining 273-809-1 69029-67-0 UVCB 100 % (w/w) Flue dust, lead-refining is a solid in powder form at 20°C, 1013 hPa. It is the dust residue recovered from exhaust gas streams from smelting and refining of lead-bearing materials. It is collected in bag filters or electrostatic precipitators and recycled on-site or externally. Flue dust, lead-refining is composed primarily of metallic lead and variable amounts of lead, copper, zinc, tin, cadmium, antimony in either alloy form or compounds such as oxides, sulphides, sulphates and/or chlorides.

Composition:

Constituents	Typical concentration	Concentration range	Remarks
Lead EC no.: 231-100-4	<= 53.3 % (w/w)	Min. 10% (w/w)	Refers to % element. In general Pb is mainly present in the form of compounds such as sulphates (e.g. PbSO4), oxides (e.g. PbSbO, PbZnO), silicates (e.g. PbSi2O5*H2O) and/or chlorides (PbCl2). Sometimes Pb may also be present in the metallic form. A minimum 10% is a decisive criterion for substance ID.
Copper EC no.: 231-159-6	<= 10 % (w/w)	>= 0 — <= 20 % (w/w)	Refers to % element. Cu is assumed to be present in the form of compounds such as oxides or sulphates.
Zinc EC no.: 231-175-3	<= 39 % (w/w)	>= 0 — <= 40 % (w/w)	Refers to % element. Zinc is generally present in the form of compounds such as oxides (e.g. ZnO, PbZnO), sulphates (e.g. Na(Zn,Fe)3(SO4)2(OH)6) and silicates (e.g. (Zn,Na)Si2O5*H2O).
Cadmium EC no.: 231-152-8	<= 2 % (w/w)	>= 0 — <= 16.9 % (w/w)	Refers to % element. Cd is assumed to be present in the form of compounds such as oxides or sulphates.
Iron EC no.: 231-096-4	<= 1.46 % (w/w)	>= 0 — <= 7.7 % (w/w)	Refers to % element. Fe is generally present in the form of compounds such as oxides (e.g. Fe3O4), silicates (e.g. Fe2SiO4)

Constituents	Typical concentration	Concentration range	Remarks
			and/or sulphates (e.g. Na(Zn,Fe)3(SO4)2(OH)6).
Nickel EC no.: 231-111-4	<= 0.1 % (w/w)	>= 0 <= 0.7 % (w/w)	Refers to % element. Ni is assumed to be present in the form of compounds such as oxides or sulphates.
Silver EC no.: 231-131-3	<= 5 % (w/w)	>= 0 <= 10 % (w/w)	Refers to % element. Ag is assumed to be present in the compounds form such as oxides or sulphates.
Antimony EC no.: 231-146-5	<= 45% (w/w)	>= 0 <= 20 % (w/w)	Refers to % element. Sb is generally present in the oxide form (e.g. PbSbO).
Arsenic EC no.: 231-148-6	<= 1.37 % (w/w)	>= 0 <= 11.7 % (w/w)	Refers to % element. As is assumed to be present in the oxide form.
Bismuth EC no.: 231-177-4	<= 0.9 % (w/w)	>= 0 — <= 3.6 % (w/w)	Refers to % element. Bi is assumed to be present in the compounds form such as oxides or sulphates.
Tin EC no.: 231-141-8	<= 3.8 % (w/w)	>= 0 <= 12.5 % (w/w)	Refers to % element. Sn is generally present in the oxide form (e.g. PbSnO).
Selenium EC no.: 231-957-4	<= 1.5 % (w/w)	>= 0 — <= 15.6 % (w/w)	Refers to % element. Se is assumed to be present in the compounds form such as oxides or sulphates.
Tellurium EC no.: 236-813-4	<= 0.72 % (w/w)	>= 0 <= 11.7 % (w/w)	Refers to % element. Te is assumed to be present in the compounds form such as oxides or sulphates.
Aluminium EC no.: 231-072-3	<= 0.9% (w/w)	>= 0 — <= 5.5 % (w/w)	Refers to % element. Al is generally present in the form of compounds such as silicates.
Chromium EC no.: 231-157-5	<= 0.02 % (w/w)	>= 0 <= 2.9 % (w/w)	Refers to % element. Cr is assumed to be present in the compounds form such as oxides or sulphates.
Manganese EC no.: 231-105-1	<= 0.1 % (w/w)	>= 0 <= 0.5 % (w/w)	Refers to % element. Mn is assumed to be present in the compounds form such as oxides.
Silicon EC no.: 231-130-8	<= 8.5 % (w/w)	>= 0 <= 33.2 % (w/w)	Refers to % element. Si is generally present in the form of silicates (e.g. Fe2SiO4).
Sodium EC no.: 231-132-9	<= 5 % (w/w)	>= 0 — <= 15 % (w/w)	Refers to % element. Na is generally present in the form of compounds such as sulphates (e.g. Na(Zn,Fe)3(SO4)2(OH)6) or silicates (e.g. (Zn,Na)Si2O5*H2O).
Potassium EC no.: 231-119-8	<= 1.01 % (w/w)	>= 0 <= 7.48 % (w/w)	Refers to % element. K is generally present in the form of compounds such as silicates.
Magnesium EC no.: 231-104-6	<= 0.4 % (w/w)	>= 0 <= 1 % (w/w)	Refers to % element. Mg is

Constituents	Typical concentration	Concentration range	Remarks
			assumed to be present in the form of compounds such as silicates.
Calcium EC no.: 231-179-5	<= 22 % (w/w)	>= 0 — <= 45 % (w/w)	Refers to % element. Ca is generally present in the form of compounds such as sulphates (e.g. CaSO4).
Fluorine EC no.: 231-954-8	<= 0.16 % (w/w)	>= 0 - <= 0.36 % (w/w)	Refers to % element. F is assumed to be present in the form of compounds.
Chlorine EC no.: 231-959-5	<= 3 % (w/w)	>= 0 <= 5.8 % (w/w)	Refers to % element. Cl is assumed to be present in the form of compounds.
Bromine EC no.: 231-778-1	<= 2.77 % (w/w)	>= 0 — <= 3.5 % (w/w)	Refers to % element. Br is assumed to be present in the form of compounds.
Sulfur EC no.: 231-722-6	<= 7.76 % (w/w)	>= 0 - <= 20 % (w/w)	Refers to % element. S is generally present in the form of sulphates (e.g. PbSO4).

Classification:

Industry self-classification according to Classification Labelling and Packaging Regulation EC 1272/2008:

CLP

Acute Tox. 2; H300: Fatal if swallowed.

Acute Tox. 2; H330: Fatal if inhaled.

Skin Corr. 1B.; H314: Causes severe skin burns and eye damage.

Eye Dam. 1; H318: Causes serious eye damage.

Skin Sens. 1B; H317: May cause an allergic skin reaction.

Resp. Sens. 1; H334: May cause allergy or asthma symptoms or breathing difficulties if inhaled Repr. 1A; H360FD: May damage fertility. May damage the unborn child.

Lact.; H362: May cause harm to breast-fed children

Muta. 1B; H340: May cause genetic defects.

Carc. 1A; H350: May cause cancer.

STOT Rep. Exp. 1; H372: Causes damage to organs through prolonged or repeated exposure.

Aquatic Acute 1; H400: Very toxic to aquatic life.

Aquatic Chronic 1; H410: Very toxic to aquatic life with long lasting effects.

Labelling:

Signal word: Danger

Hazard pictograms:

GHS05: Corrosion

GHS06: skull and crossbones

GHS08: health hazard GHS09: environment

Hazard statements:

H300	Fatal if swallowed.
H330	Fatal if inhaled.
H314	Causes severe skin burns and eye damage.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H340	May cause genetic defects.
H350	May cause cancer.
H360FD	May damage fertility. May damage the unborn child.
H362	May cause harm to breast-fed children
H372	Causes damage to central nervous system, blood and kidneys through prolonged or
	repeated exposure by inhalation or ingestion.
H110	Very toxic to aquatic life with long lasting effects

H410 Very toxic to aquatic life with long lasting effects.

Disclaimer

The statements and content supplied in this document are for information purposes only and do not constitute advice regarding legal or regulatory compliance. You are solely responsible for obtaining legal or regulatory advice necessary in making your own evaluation of any legal or regulatory requirements applicable to you or your company. The International Lead Association and the Pb REACH Consortium do not make any representations or warranties in relation to the statements or content appearing in this document, including as regards their accuracy, completeness or timeliness. Neither the International Lead Association nor the Pb REACH Consortium will be responsible for any loss or damage caused by or arising from reliance on the statements made or information contained in this document.